Predicting Big Raster Stacks w/HPC

Here’s the latest of what I’m working on… Fitting models to predict FIA metrics from summarized LiDAR variables separate models for each NPC system boral Validating those models Using those models to predict the values of FIA metrics across the state The last objective, given the fine scale of summarized LiDAR data and the broad […]

Continue reading..Predicting Big Raster Stacks w/HPC

GDAL

Here are some examples of masks I’ve made, keeping values within certain ranges. Then, I get rid of all the other values. gdal_calc.py -A combine_rcls.tif –outfile=result.tif –calc=”1*((A<=119)&(A>=44))” –NoDataValue=0 gdal_calc.py -A result.tif –outfile=FPWF.tif –calc=”1*((A<=54)|(A>=111))” –NoDataValue=0 gdal_calc.py -A combine_rcls.tif –outfile=FD.tif –calc=”1*((A<=37)&(A>=19))” –NoDataValue=0 gdal_calc.py -A combine_rcls.tif –outfile=MH.tif –calc=”1*((A<=77)&(A>=61))” –NoDataValue= This leaves only 1’s where the desired pixel values […]

Continue reading..GDAL

Raster Parallelization

There’s a cluster function in the raster package! https://www.gis-blog.com/increasing-the-speed-of-raster-processing-with-r-part-23-parallelisation/ https://www.gis-blog.com/increasing-the-speed-of-raster-processing-with-r-part-33-cluster/ http://r-sig-geo.2731867.n2.nabble.com/Re-Parallel-predict-now-in-spatial-tools-td7586048.html http://www.timassal.com/?p=1920

Continue reading..Raster Parallelization